

## IPR MEASUREMENT AND EFFECTS ON INNOVATION: IMPLICATIONS FOR CHINA

Walter G. Park, American University, Nov. 15, 2010

### Outline

Construction of Index of Intellectual Property Rights

Case Study: South Korea

Implications for China

## Background

#### □ GDP

#### □ GPA

#### □ IPR Index

# Background

| Email Requests for IPR Data (2) | 2008 – 2010): |
|---------------------------------|---------------|
| Fellow Academics                | 12%           |
| Business                        | < 1%          |
| Government/Institutions         | 7%            |
| Undergraduate Students          | 5%            |
| Graduate Students               | 17%           |
| Students in China               | 58%           |

## I. Construction of Measures of IPR

#### Survey Approach

- World Economic Forum (WEF) Global Competitiveness Report
- Institute for Management Development (IMD) World Competitiveness Yearbook
- Mansfield (1994), Sherwood (1997)
- Index Approach
  - Rapp and Rozek (1990)
  - Ginarte and Park (1997), Park (2008)
  - Ostergard (2000), Reynolds (2003)

# IA. Survey Approach

#### WEF:

"Intellectual Property Protection in your country Is Weak and Not Enforced <1 2 3 4 5 6 7 > Is Strong and Enforced

Circling 1 means you *completely* agree with the answer on the left-hand side Circling 2 means you *largely* agree with the answer on the left-hand side Circling 3 means you *somewhat* agree with the answer on the left-hand side Circling 4 means your opinion is *indifferent* between the two answers Circling 5 means you *somewhat* agree with the answer on the right-hand side Circling 6 means you *largely* agree with the answer on the right-hand side Circling 7 means you *completely* agree with the answer on the right-hand side"

#### Moving Average Score

Per country:

Score (year t) =  $\omega_t$  Rating (year t) +  $\omega_{t-1}$  Rating (year t-1)

# Sample Estimates

#### **World Economic Forum**

|          | 2010 Score (Rank)       | 2001 Score (Rank)       |
|----------|-------------------------|-------------------------|
| USA      | 5.1 (24 <sup>th</sup> ) | 6.5 (3 <sup>rd</sup> )  |
| Germany  | 5.7 (9 <sup>th</sup> )  | 6.3 (6 <sup>th</sup> )  |
| S. Korea | 4.1 (44 <sup>th</sup> ) | 4.0 (37 <sup>th</sup> ) |
| China    | 4.0 (49 <sup>th</sup> ) | 2.9 (60 <sup>th</sup> ) |
| India    | 3.6 (66 <sup>th</sup> ) | 3.0 (58 <sup>th</sup> ) |
|          | 139 countries           | 79 Countries            |

# Survey Approach

#### Advantages

- Based on experience
- Provides information that is otherwise unobserved (e.g. actual practice)

#### Limitations

- Limited Time-Series
- Comparability Issues
- Lump all IPR together
- Subjective
- Expensive

### **IB.** Index Approach

□ Patent Rights Index (0 - 5)

- Duration (0 1)
- Coverage (0 1)
- Restrictions, if any (0 1)
- Enforcement Mechanisms (0 1)
- Membership in International Treaties (0 1)

#### Duration

Application-Based Systems: 20 Years

□ Grant-Based Systems: 17 Years

# Coverage

- Pharmaceuticals
- Chemicals
- Food
- Surgical Products
- Microorganisms
- Plant & Animal Varieties
- Software
- Utility models (Petty patents)

# Restrictions, if any

Working Requirements

Compulsory Licensing

Revocation

### **Enforcement Mechanisms**

Preliminary Injunctions

Contributory Infringement

Burden-of-Proof Reversal

#### Membership in International Treaties

Paris Convention

Patent Cooperation Treaty

□ UPOV (New Varieties)

Budapest Treaty (Microorganism Deposits)

□ TRIPS

#### Sample:

|                | 1990 | Rank | 2005 | Rank |
|----------------|------|------|------|------|
| United States  | 4.68 | 1    | 4.88 | 1    |
| France         | 3.88 | 8    | 4.67 | 5    |
| Japan          | 3.88 | 9    | 4.67 | 6    |
| United Kingdom | 4.34 | 3    | 4.54 | 11   |
| Germany        | 3.97 | 6    | 4.50 | 14   |
| Korea (South)  | 3.69 | 12   | 4.33 | 18   |
| China          | 1 33 | 93   | 4 08 | 34   |
| Mexico         | 1 36 | 01   | 3.88 | 30   |
|                | 1.00 | 405  | 0.70 | 39   |
| India          | 1.03 | 105  | 3.76 | 41   |
| Brazil         | 1.28 | 94   | 3.59 | 49   |
| Cameroon       | 1.90 | 52   | 3.06 | 71   |
| Thailand       | 1.21 | 97   | 2.66 | 96   |



Figure 1. Strengthening of Patent Rights by Income Group

Quintiles (Real GDP per capita, 1990, in constant 2000 U.S. dollars)



<sup>■</sup>%Chng Duration <sup>■</sup>%Chng Enforcement <sup>□</sup>%Chng Loss of Rights <sup>□</sup>%Chng Membership <sup>■</sup>%Chng Coverage

#### Figure 3. Composition of Change in Patent Strength 1990 - 2005, Middle Quintile



□%Chng Duration □%Chng Enforcement □%Chng Loss of Rights □%Chng Membership ■%Chng Coverage

#### Figure 4. Composition of Change in Patent Strength 1990 - 2005, Top Quintile



□%Chng Duration □%Chng Enforcement □%Chng Loss of Rights □%Chng Membership ■%Chng Coverage

## **Correlations with other Measures**

|                                                 | 1995  | 2000  | 2005  |
|-------------------------------------------------|-------|-------|-------|
| World Economic Forum IPR                        |       | 0.74  | 0.67  |
| Institute Mgt Development IPR                   | 0.65  | 0.56  | 0.48  |
| Econ Freedom Network: Property Rights           | 0.69  | 0.66  | 0.68  |
| Business Software Alliance: Piracy Rate         | -0.74 | -0.67 | -0.75 |
| Governance Indicators: Rule of Law              | 0.70  | 0.72  | 0.73  |
| Governance Indicators: Regulatory Quality       | 0.58  | 0.76  | 0.79  |
| Governance Indicators: Government Effectiveness | 0.77  | 0.76  | 0.78  |
| Doing Business: Legal Rights                    |       |       | 0.35  |
| Doing Business: Investor Protection             |       |       | 0.25  |
| Doing Business: Cost of Contract Enforcement    |       |       | -0.51 |

# More detail: China

| Components:                | 1995  | 2000  | 2005  |
|----------------------------|-------|-------|-------|
|                            |       |       |       |
| Membership Intl Agreements | 0.200 | 0.800 | 1.000 |
| Coverage                   | 0 250 | 0.625 | 0 750 |
| overage                    | 0.200 | 0.020 | 0.700 |
| Loss of Rights             | 0.333 | 0.333 | 0.333 |
|                            |       |       |       |
| Enforcement                | 0.333 | 0.333 | 1.000 |
| Duration                   | 1.000 | 1.000 | 1.000 |
|                            |       |       |       |
| Total                      | 2.117 | 3.092 | 4.083 |

# China: Complementary Data



## China: Complementary Data



## China: Complementary Data



# II. Case Study (S. Korea)

 Kim, Yee-Kyoung, Lee, Keun, Park, Walter, and Choo, Kineung, (2010),
"Appropriate Intellectual Property Protection and Economic Growth in Countries at Different Levels of Development", in progress.



# Patents vs. Utility Models

#### **Similarities**

•

:

:

- Exclusive Rights
- Disclosure
- Registration

#### Differences

- Duration
- Substantive
  - Examination
- Inventive Step
- Scope

:

### **Theoretical Perspectives**

□ Grossman and Lai (2004)

Optimal IPR varies between North and South

Eicher and Penalosa (2008)
Endogeneity between IPR and Development

Suthersanen (2006)
Incremental Innovation and learning-by-doing

### **Theoretical Perspectives**

#### Evenson and Westphal (1995)

Strong IPRs can be a powerful instrument for encouraging many forms of investment at all levels of technological development if they are sufficiently focused on promoting those forms of investment which are respectively important at each level. More imagination than has previously been given to their design is clearly in order. ... [U]tility models exemplify the gains in creativity in this area. Utility model protection, for example, is actively sought in the few countries, like Korea, that grant it. Moreover, the evidence suggests that it stimulates the kinds of minor, adaptive inventions that are important in the early to middle phases of technological development."

#### Rosenberg (1979)

Cumulative Impact of Small Improvements

# Why Utility Models suited S. Korea

- Weak Patent System and Enforcement
- Lagging Technological Capability and Limited Technological Resources
- Relied on Imported Technologies, Reverse Engineering, and Imitation
- Adapted Foreign Technologies for Local Needs
- Innovation was Incremental in Nature

## Korean Trends



Note: Revision of Choi and Lee (2005)

### Korean Trends

R&D/GDP(%) 4 3.5 3 2.5 2 1.5 1 0.5 0 ્વ<sup>1</sup> ૾ વ<sup>1</sup> ૾ વ<sup>6</sup> ૾ વ<sup>6</sup> ર વ<sup>6</sup> ર વ<sup>6</sup> ર વ<sup>6</sup> ર વ<sup>6</sup> ર વ<sup>6</sup> ર q<sup>6</sup> 2 q<sup>6</sup> 2

## Korean Trends



# U.S. Patents Granted in 2009

| Rank | Country                     | Count |
|------|-----------------------------|-------|
| 1    | JAPAN                       | 35501 |
| 2    | GERMANY                     | 9000  |
| 3    | KOREA, SOUTH                | 8762  |
| 4    | TAIWAN                      | 6642  |
| 5    | CANADA                      | 3655  |
| 6    | UNITED KINGDOM              | 3175  |
| 7    | FRANCE                      | 3140  |
| 8    | CHINA, PEOPLE'S REPUBLIC OF | 1655  |
| 9    | ISRAEL                      | 1404  |
| 10   | ITALY                       | 1346  |

# **Resident Patenting in S. Korea**



Utility Models Inventions

# **Resident Patenting in S. Korea**



### Ratio of Utility Models to Invention Patents (S. Korea)



### Study in a Nutshell

- Datasets 1970 2003
  - International Panel Data Set (World Bank)
    - > 70 Countries
  - Korean Annual Firm Level Data Set (KIPRIS and KIS)
    - > 3000 Firms
- Empirical Model (Dynamic)
  - Y = f(Y<sub>-1</sub>, P, UM, Control Variables)
  - $P = g(P_{-1}, IPR, Control Variables)$
  - Y denotes GDP (or Sales), P patents, UM utility models

# International Panel Data Results

| Innovation Equation                    |          | Growth Equation |                                        |          |          |
|----------------------------------------|----------|-----------------|----------------------------------------|----------|----------|
| Variables                              | (1)      | (2)             | Variables                              | (3)      | (4)      |
| Patent Rights<br>Index (PRI)           | 0.699*** |                 | Patenting<br>Intensity (PI)            | 0.048*** | 0.067*** |
| PRI * D                                | -0.489** |                 | PI * D                                 |          | -0.066*  |
| Utility Model<br>Dummy (UM)            |          | -0.078          | Utility Model<br>Intensity (UMI)       | 0.001    | -0.003   |
| UM * D                                 |          | 0.227*          | UMI * D                                |          | 0.012**  |
| Controls, Time<br>Dummies,<br>Constant | Included | Included        | Controls, Time<br>Dummies,<br>Constant | Included | Included |
| N                                      | 255      | 255             | Ν                                      | 328      | 328      |

# Korean Firm Level Results

| Sales Growth Equation                  |                    |                 |                  |
|----------------------------------------|--------------------|-----------------|------------------|
| Variables                              | (1) Full<br>Period | (2) Pre<br>1987 | (3) Post<br>1987 |
| Patenting<br>Intensity                 | 0.025**            | -0.019          | 0.053***         |
| Utility Model<br>Intensity             | 0.009              | 0.047**         | 0.005            |
| Controls, Year<br>Dummies,<br>Constant | Included           | Included        | Included         |
| Ν                                      | 14359              | 3034            | 11325            |

#### Innovation Equation

| Variables                                    | (4)      |
|----------------------------------------------|----------|
| Patent<br>Applications <sub>t-1</sub>        | 0.539*** |
| Patent<br>Applications <sub>t-2</sub>        | 0.258*** |
| Utility Model<br>Applications <sub>t-5</sub> | 0.084**  |
| Utility Model<br>Applications <sub>t-6</sub> | 0.039*   |
| Controls, Year<br>Dummies,<br>Constant       | Included |
| Ν                                            | 9903     |

## Lessons of Study

#### □ Effects of IPR varies by level of economic development

- Patents raise cost of innovation; onerous in LDCs
- Patents most effective where innovative capacity exists
- Endogeneity between IPR and technological development

#### Utility Models

- Incentives for incremental innovation
- Helps build innovative capacity
- Stepping stone for further technological progress
- Best utilizes local capabilities
- Rapid development in S. Korea is connected to "incremental innovation" as a strategy for technological catch-up

### III. Implications for China

□ Relevance?

Transition from Imitation to Innovation

Transition from Weak IPR System to Strong

Incentives for Stronger IP Enforcement in China

## **Resident Patenting in China**

Applications

#### Grants



#### Ratio of Utility Models to Invention Patents (China)



#### Issues:



#### Issues:

